Seven consecutive primes in arithmetic progression
نویسندگان
چکیده
It is conjectured that there exist arbitrarily long sequences of consecutive primes in arithmetic progression. In 1967, the first such sequence of 6 consecutive primes in arithmetic progression was found. Searching for 7 consecutive primes in arithmetic progression is difficult because it is necessary that a prescribed set of at least 1254 numbers between the first and last prime all be composite. This article describes the search theory and methods, and lists the only known example of 7 consecutive primes in arithmetic progression.
منابع مشابه
Ten consecutive primes in arithmetic progression
In 1967 the first set of 6 consecutive primes in arithmetic progression was found. In 1995 the first set of 7 consecutive primes in arithmetic progression was found. Between November, 1997 and March, 1998, we succeeded in finding sets of 8, 9 and 10 consecutive primes in arithmetic progression. This was made possible because of the increase in computer capability and availability, and the abili...
متن کاملStrings of Consecutive Primes in Function Fields
In a recent paper, Thorne [5] proved the existence of arbitrarily long strings of consecutive primes in arithmetic progressions in the polynomial ring Fq[t]. Here we extend this result to show that given any k there exists a string of k consecutive primes of degree D in arithmetic progression for all sufficiently large D.
متن کاملStrings of Special Primes in Arithmetic Progressions
The Green-Tao Theorem, one of the most celebrated theorems in modern number theory, states that there exist arbitrarily long arithmetic progressions of prime numbers. In a related but different direction, a recent theorem of Shiu proves that there exist arbitrarily long strings of consecutive primes that lie in any arithmetic progression that contains infinitely many primes. Using the technique...
متن کاملDirichlet’s Theorem on Primes in Arithmetic Sequences Math 129 Final Paper
Dirichlet’s theorem on primes in arithmetic sequences states that in any arithmetic progression m,m + k, m + 2k, m + 3k, . . ., there are infinitely many primes, provided that (m, k) = 1. Euler first conjectured a result of this form, claiming that every arithmetic progression beginning with 1 contained an infinitude of primes. The theorem as stated was conjectured by Gauss, and proved by Diric...
متن کاملLarge Gaps between Consecutive Prime Numbers
Let G(X) denote the size of the largest gap between consecutive primes below X . Answering a question of Erdős, we show that G(X) > f(X) logX log logX log log log logX (log log logX) , where f(X) is a function tending to infinity with X . Our proof combines existing arguments with a random construction covering a set of primes by arithmetic progressions. As such, we rely on recent work on the e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Math. Comput.
دوره 66 شماره
صفحات -
تاریخ انتشار 1997